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The conditions for the appearance of convection in a pure medium which 
is heated from below have been studied cltite extensively. A great number 
of theoretical and experimental papers are devoted to this problem. The 
convectfve stability of a mixture with inhomogeneous temperature and 
concentration distribution, on the other hand, has not been investigated 
sufficiently, although this problem In all its aspects is no less 
interesting. The authors are aware of two theoretical papers devoted to 
the convective stability of a mixture. Wertheim [11 has obtained small 
perturbation equations and investigated the stability problem for a 
mixture in a circular vertical cylinder; in that paper the conditions 
which give rise to steady convection have been determined (the corre- 
sponding problem for a pure medium has been solved by Ostroumov [21; 
oscillating disturbances were not considered. It has been shown by 
Gerasiraova* that with certain given boundary conditions, vibrational dis- 
turbances are absent provided the characteristics of the mixture satisfy 
certain ineQualIties. In this case non-equilibrium is defined only by 
the monotonic disturbances and the investigation of the stability may 
be carried out by the use of the variational method suggested by 
Sorokin f31. Ihe problem of vibrational stability remained essentially 
unsolved. 

l Qerasiaova, S.B., On the theory of convective phenomena in binary 
mixtures. Candidate dissertation, University of Per& , 1965. 
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In this paper a solution is presented of the stability problem of a 

Plane vertical layer of a mixture in 8 gravity field. Because of the 
simplicity of the field of flow, an exact solution may be established 
for the non-steady small perturbation equations. The investigation of 
the spectrum of the disturbances, in particular, leads to the conclusion 
that in a mixture in distinction to the case of a pure medium [31, there 
are two possible forms of instability, which correspond to monotonic and 
vibrational disturbances. The qualitative peculiarities of the estab- 
lished spectrum of instability evidently are not related to the geometry 
of the region. We shall note that under certain conditions there occurs 
a breakdown of equilibrium as the density gradient is directed downward 
(i.e. heavier fluid toward the bottoer). This effect, as will be shown, 
is explained by the opposing effects of diffusion and of heat conduct- 
ivity which are peculiar to the mixture. 

1. Let us investigate a two-component mixture, of density 

P = PO (1 - PJ - P!O f1.Q 

where T and C are the temperature of the mixture and the concentration 
of the lighter component respectively, measured from a given reference 
level. If the temperature and the concentration of the mixture are in- 
homogeneous, then, in general, motion arises. The equations of convec- 
tion of the mixture with consideration of the effects of thennal diffu- 
sion and diffusive thermal conductivity were obtained and discussed by 
Shaposhnikov [A 

g+(vv)v= - -& vp + vvav + g (PJ + Pa r 

g + vVT = (x + ~~=D) V=T + NkDv= C (1.2) 

‘$-I- vVC = hD’C7= T + DV=C, divv = 0 

where v is velocity; p is the pressure, measured from the hydrostatic 
zero at T = 0 and C = 0; p. is the density, corresponding to T = 0 and 
C = 0; y is a unit vector, pointing vertically upward; x, D and A are 
the coefficients of heat conduction, diffusion and of thermal diffusion 
respectively; N is the thematic coefficient which defines (together 
with A) the effect of diffusive thermal conductivity [41. The parameters 
of the medium in all the formulas are considered to be constant. We shall 
also introduce the expressions for the molecular heat flux q and the 
diffusive flux of the light component j 

Q = - po+, [(x + N&~L>) VT t N~DvCI, j = -D V.-VT + VCI (l-3) 

From equation (1.2) it is easily seen that for static equilibrium 
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for which v = 0 and all quantities are independent of time, the tempera- 
ture T,, and the concentration C, satisfy the equations 

V’To= 0, V2Co=.0, (P,vTll+ P*VCo) x7 = 0 (1 A) 

Hence it follows that the gradient of the density of the mixture in 
equilibrium is constant and vertical. 

Let us investigate the stability of the equilibrium of a plane layer 

of a mixture, bounded by infinite vertical parallel planes r = f d. We 
shall consider the equilibria when not only the gradient of the density, 
but also the gradients of the temperature and of the concentration are 
constant and vertical 

VT, = - A,y, VC,, = - B,,y (1.5) 

From (1.4) it is seen that the conditions of equilibrium can exist 
also for more complicated distributions of temperature and concentration. 
From equation (1.5) it follows that for equilibrium the heat flux q and 
the diffusive flux j are also vertical. Because of the conditions on the 
lower and upper ends of the layer these fluxes may be chosen independent 
of each other. lherefore, we shall assume also that the constants A, and 
B a, which determine the fluxes, are chosen independently. If according 
to the conditions of the equilibrium problem j = 0 and q = 0, then A, 
and B, are found to be related. ‘Ihis was shown in the papers by Wertheim 
and Gerasimova who investigated such cases. 

2. Consider a disturbance of the equilibrium (1.5) of the following 
form: 

v, = 0, v, = 0, v* = v (z, t), T = T (2, t), C =I C (z, 1) (2.4) 

(the z-axis is directed vertically upward). Assuming that the pressure 
gradient is equal to zero (free convection) and assuming that all 
quantities depend on time according to the law cut, we obtain from (1.2) 
with the help of (1.5) the perturbation equations 

or = vu” + g (BJ + Bz C) 

aT - A,v = (x + NhaD) T” + Nh DC” (2.2) 
CJC - B,v = hDT” 4- DC” 

(primes mean differentiation with respect to n). Let us choose the units 

of distance 1 = d/u, of time 12/v, of velocity x/1, of temperature A,/2 
and of concentration R,lx/D. 

Keeping the previous notation for the variables, equations (2.2) may 
be represented in non-dimensional form 
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QV = v” + RT + R& 
( 
R = &Ao14 

--y--l 
R, _ gPaBo14 -- 

VD o 1 

aPT- v= (1 +a)T”++C” (P=+,Pci=+) 

OPdC - v = bT” + C” 
( 
llL?LE, b= UP 

x Box 1 

(2.3) 

where R and Rd are the usual and the diffusive Rayleigh numbers respec- 
tively; P and pd are the Prandtl numbers; and a and b are nondimensional 
parameters which characterize the thermal diffusion and diffusive heat 
conductivity. Feations (2.3) have simple solutions, satisfying the con- 
dition of a closed flow 

x 

s 
vdx=O 

--II 

with the following boundary conditions: 

1) At the boundaries of the layer x f IT the velocity and the disturb- 

ances of temperature and concentration vanish. In that case V, T 
and. C are proportional to sin n,x, where n = 1, 2, 3, . . . 

2) At the boundaries of the layer V’ = T’ = C’ = 0 (free heat insu- 
lated impermeable boundaries). Then V, T and C are proportional to 
sin [2n + 1)x/21 , where n = 0, 1, 2, . . . 

The results in regard to stability obtained from the perturbation 
investigation of both types are qualitatively the same. Therefore, to 
be brief, we shall consider here only the first case taking n = 1 as 
the basic level of instability). When substituting the solution of the 
form (u, T and C) * sin x into the equations (2.3)) we obtain a system 
of linear homogeneous equations for the amplitudes of the disturbances. 
Upon equating the determinant of this system to zero, we find the equa- 
tion for the characteristic decrements u. l’he sign of the real part of 
u indicates the attenuation (Re u < 0) or the amplification (Re o > 0) 
of the disturbances; the imaginary part of u defines the frequency of 
the disturbances. 

The characteristic equation has the form 

Ao3+Boe+Co+D=0 (Z-4) 

where 

A = PP& B=P+PPd+(i +U)Pd 

C = 1 + P + (1 + a) Pd - P,jR - PRd 
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D =1-((1+a)R-(l+a+n/a)Rd (a = - wz / I%) 

The real and imaginary parts of the characteristic decrement a = a1 + 
ia satisfy the equations 

A (G,3 - 3a,o,2) + B (al” - 02’) + Ca, + D = 0 (2.5) 

6, [A (3cq - a,“) + 2qB + Cl = 0 (2.6) 

It is seen from these equations that there exist two types of dis- 

turbances: 

1) monotonic time varying disturbances a2 = 0: 

2) periodic disturbances, a% # 0. 

First consider the monotonic disturbances. In the case a2 = 0 equa- 

tion (2.6) is satisfied and equation (3.5) serves to find the real 
decrement a1 as a function of all parameters. ‘Ihe boundary of stability 
is determined from the condition a1 = 0, i.se. D = 0, or 

(2.7) 

Each point in the plane RR, corresponds to a state of equilibrium 
with given values of gradients of temperature and concentration A, and 
B,. ‘Ihe Rayleigh numbers R and R, may be either positive or negative, 
depending on the direction of the gradients. Fqation (2.7) describes a 
straight line in the plane RR,, which separates the region where al < 0 
(attenuation of monotonic disturbances), from the region, where a1 > 0 
(amplification of monotonic disturbances). 

By analogous means we shall find the “neutral” line for periodic dis- 
turbances. For these disturbances a2 f 0 and the square bracket in (2.6) 
has to be equated to zero. Together with (2.5) this yields the system 
from which the decrement of disturbances a1 and their frequency a2 are 
determined. Upon eliminating aq from the two equations we find the equa- 
tion for the decrements of the periodic disturbances al. On the bound- 
ary of stability a1 = 0. This gives All -RC = 0; from this we find the 
equation of the “neutral” line for periodic disturbances 

pd [ppd + (1 + a) pd - UP]R + P [P +PPd - (UiCt)Pd]Rd = 

= [p + (1 + a) Pdl [(I + p) (1 + Pd) + @dl (2.8) 

In the planeRRd the lines (2.7) and (2.8) intersect each other at 
the point with the coordinates 
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We shall also find the equation vrhich defines the frequency of the 

“neutral” osciflations 

(2.11) 

From formula (2.11) it is seen that the frequency of neutral oscilla- 

tions becomes zero at the point of inter- 

section of lines (2.7) and (2.8) and is 

real on the line (2.8) only on one side _. 

of this point. ‘lhe line (2.8), therefore, ‘* 

has the meaning of a neutral line for 

periodic disturbances only on one side . . 

of the point of intersection; namely the 

point where u2 ’ > 0. (This is in Com- 

plete analogy to the case of convectional 

stability in a magnetic field [51 and in 

the case of rotation f63 . ) 

Equations (2.1) to (2.11) contain many 

parameters. In order to clarify the 

characteristi’c peculiarities of the situ- 

ation we shall discuss below certain 
cases which are of greatest interest. 

3, Consider first the simplest case 

for which the effects of thermal diffu- 

sion and of diffusive heat conductivity 

(A = 0) may be neglected. In this case 

the basic equations (1.2) and the ex- 
pressions for the fluxes Il.3) are sig- 

nificantly simplified and the new effects 

related to diffusion, which were 

mentioned in the introduction are par- 
ticularly distinct. Equations of neutral 
curves for monotonic and vibrational dis- 

turbances may now be written in the 

following way fin equations (2.7) and 

(2.8) it must be assumed that a = a = 0): 
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R+&=i 

Pd’ (1 + P) R + Pa (1 + Pd) Rd = 

= (1 + p) (1 + Pd) (p + Pd) 

(3.1) 

(3.2) 

The coordinates of the point of intersection of lines (3.1) and (3.2) 
in the plane RR, are 

‘lhe critical frequency of the periodic disturbances on the line (3.2) 
is determined by the relationship 

‘lhe distribution of the lines of stability in the plane RR, is de- 
termined by the relation Pip, = D/x. In Fig. 1 a, b and c, the curves 
of stability, are represented for the cases P < Pd, P = Pd and P > Pd, 
respectively. In Fig. 1, line 1 is the neutral line for monotonic dis- 
turbances. The intersections of line 1 with the R-axis and Rd-axis, re- 
present the critical Rayleigh numbers for the cases of purely thermal 
and purely concentrational instability. Line 2 in Fig. la and lb repre- 
sents the neutral line for periodic disturbances. The region of stability 
is situated under the lines 1 and 2. ‘Ihe curve A = 0 is also represented 
in the figures, where A is the discriminant of the cubic equation (2.4)*. 
In the region below this curve the cubic equation (2.4) has two-complex 
conjugated roots which describe the periodic disturbances. ‘lhe decrement 
of periodic disturbances becomes zero on line 2; in the region between 
the line 2 and the curve A = 0 the periodic disturbances are amplified. 
‘thus, in a mixture, in distinction to a pure medium, vibrational insta- 
bility is possible. ‘lhe only exception is the case P = Pd, i.e. x = D, 
when the point of intersection of lines 1 and 2 approaches infinity 
(Fig. lb). In that case periodic disturbances are always damped and 
there exists only the monotonic instability in the region above line 1. 

l The extrenum on the discriminant curve A = 0 has the follorihg co- 

ordinates 

R=_ ‘d 2- $ + PJ 
I 

3. R, = 
P 

27P (P - Pd) 27P, (Pd - P) 
2- % (l+ P) 1 3 

Contact with the axes R and Rd correspondingly occurs at the points 

R= (p-ppd)(l -pd) R _ (pd-p)tl-pP) 

pda 
d- 

P 
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In a pure medium, as is well known, instability arises if the density 
gradient is directed upward (heavier fluid on top) and if its magnitude 
exceeds a certain critical value. It might have been expected that also 
in a mixture the appearance of instability is determined in the last 
resort by the density gradient. 

It turns out, however, that this is not so: the instability arises 

under certain conditions if the density of the mixture is everywhere 
the same and even if the gradient of density is directed downward. 

It is easy to find a line in the RR, plane, of which all the points 
represent a state of equilibrium of a mixture with zero density gradient. 

‘Ibe equation of this line, as seen from (l.l), is 

PciR + PRd =0 (3.5) 

To the points in the RR, plane, situated below the line (3.5), there 
correspond states of equilibrium with density gradient directed down- 
ward; in the region above the line (3.5) the gradient 0, is directed 
upward. ‘lhe line (3.5) in all cases, with the exception of P = Pd, 
intersects the lines 1 and 2 (Fig. 1). In each of the cases P < Pd and 
P > Pd there are, therefore, two regions for which the stability curve 
is located below the line 0, = 0 (one of such regions is shaded in Fig. 
la). All states of equilibrium, represented by the points inside these 
regions, are unstable, although for those states the medium on the 
bottom is heavier. 

This somewhat unexpected result of the calculation may be visualized. 

Consider, for example, the shaded region in Fig. la, where according 
to the calculation instability of the monotonic type occurs with the 
density gradient directed downward. In this region we have the tempera- 

ture gradient, directed upward (R < 0; heat applied on top) and the con- 
centration gradient directed downward (Rd > 0: lighter component 
dominant on the bottom). Here the inequality Pd > P is also valid (i. e. 
x > D; equalization of temperature takes place faster than equalization 
of concentration). 

Under these conditions an element of the medium which accidentally 

moved upward will be heated quickly, but it will lose its light compo- 
nent relatively slowly. In its new location the temperature of that 
element will, of course, be lower than the temperature of the neighbor- 
ing medium, but it will be richer of the lighter component; if th,e 
gradients have suitable values, the density of the displaced element 
may become smaller than the density of the surrounding medium and. con- 
sequently, the element will continue to rise: instability of the 
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monotonic type will occur. In a similar manner the appearance of 
periodic instability may be understood for the case when the medium on 
the bottom is heavier. 

4. Results of Section 3 referred to the case h = 0 (i.e. a = 0, 

a = 0), when transport effects, namely the thermal diffusion and the 
diffusive heat conductivity may be neglected. If these effects are sig- 

nificant, the general equations (2.7) to (2.11) should be used. The 
situation described in Section 3, in 
general, is valid also when thermal 
diffusion and diffusive heat conduct- 
ivity are taken into account. How- 
ever, the relative configuration of 
the neutral lines of the monotonic 
and the periodic disturbances will 

W&T?,+ 

now be determined by the four para- 
o) b) c) 

meters of the medium (P, Pd. a, a) 

and it may be different from that 
a)a=O,c>+(i+P) 

represented in Fig. 1. From the 
general equations (2.7) to (2.11) b) a=O, 

i+p 
-i<a<- i+p+p, 

we may easily obtain a classifica- 
tion of all the possible cases of C) -*=<a< 0 

relative configuration of the sta- 
bility lines in the RRd plane, de- 
pending on the relationships between 

Fig. 2. 

the parameters. It is not necessary to present this classification here, 
inasmuch as some of the formally possible cases may be of little 
practical int crest, because, for example, mixtures with an anomalous 
thermal diffusion (A > 0) seldom occur, and the effect of diffusive heat 
conductivity is always very small. In Fig. 2 examples of the spectra of 
instability for certain values of the parameters are given. (The point 
R = Rd = 0 lies always in the stable region.) In connection with these 
examples it is noted that in the presence of thermal diffusion, a 
mixture (with respect to stability) differs from a pure medium, even if 
in that mixture a gradient of concentration is absent (Rd = 0). Con- 
sequently, as seen from Fig. 2a, instability for Rd = 0 occurs with 
sufficient heating on the bottom and below. It is seen further from Fig. 
2b that when heating below for Rd = 0 instability occurs relative to 
the periodic disturbances, etc. 

5. It is interesting to investigate the stability of the equilibrium 

for cases for which the equilibrium gradients of temperature and con- 

centration are associated through a given relationship and therefore no 
longer independent, as was assumed above. 

If, for example, the vertical canal is closed at top and bottom, so 
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that the substance cannot go through, then for static equilibrium the 
mass flux is zero: j = 0; here the heat flux g differs from zero and it 

is defined by the conditions of heating. 

Another limiting case may be investigated, 

when mass flux occurs along the canal. 

In both cases the gradients of temperature 

namely when 9 = 0, but 

and of concentration 

differ from zero, they are connected, however, by the conditions j = 0 
or q = 0. 

Consider first the case j = 0. Flere the mass diffusive and thermal 

diffusive fluxes compensate each other and the gradients of temperature 

and of concentration are connected by the relation hA, + R, = 0, as seen 

from the second equation of (1.3) and from (1.5). 

In nondimensional form these functions are 

- uPdR + PRd = 0 (5-U 

From equations (2.7) and (2.8), taking into account (5.11, we find 

expressions for the critical Rayleigh numbers R, and R, for the cases 

of monotonic and periodic disturbances respectively 

RI = (P+aPd) +aPP+Pd+aPd) (5.2) 

R 
2 

= lp + (I + al Pdl [(t + p, (1 + Pd) + @d] 

PdB 11 $ (1 f a) PI 
(5.3) 

Figure 3 represents critical numbers R, and R, depending on the para- 

meter of thermal diffusion a for constants P, Pd and a. Curves RI(a) 

and R,(a) intersect at a = a,,, where 

(P+aPd) (1 +P+aPd)+aPd2 

” = - (p + Pd + aPd).(l+ p + apd) + (I+ a) pd2 
(5.4) 

This frequency of the neutral vibrations on the line R,(a) equals 

6o2 = cp $_ pd f aPd) (‘1 f p + apd) 
_ PPd’ (1 + f’ + %P) (a, - 4 (5.5) 

As seen from Fig. 3, in case of normal thermal diffusion (h < 0, 

a > 0) instability is possible only with respect to monotonic disturb- 

ances for which the critical number R, decreases with an increase of a. 
In the region of significant thermal diffusion, periodic instability is 

possible 

- (1 f $) <a<~, branch R, 
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and likewise instability of the monotonic type when heating occurs 

top 

451 

on 

a<-- P-l-aPd 
P-i-Pd+aPd 

lower branch of R, 

* 

\ 

I a0 a Analogous relations exist for the 

i), 1 
case q = 0. ‘llle connection between I: 

1 
and R, here is as follows: 

I 

Fig. 3. -a (1 + a) PdR + uPRd = 0 (5.6) 

We shall give only the critical values of the diffusive !Iayleigh 

number for the monotonic and the periodic disturbances 

The authors 

results. 

&ii = 
(1 + a) Pd 

((1 + a)*Pd + apl + (a /a) fp + ti + a) Pdl 
(5.7) 

Rdz = 
(1-t a) (p f Pd + aPd) [(I+ p)(l -kPd)f aPdl - 

PP[~+(lfa+n/a)Pdl 
(5.8) 

are grateful to E.P. Velikhov for his discussion of the 
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